Underground water systems developed in soluble rocks

Philippe Renard Karst hydrogeology Spatial statistics Marco Dentz Physics Solute transport Benoît Noetinger Fluid mechanics Homogenization

Bojan Mohar Mathematics Network Science

Image source: https://www.nationalgeographic.fr/voyage/krizna-la-sublime-grotte-slovene-sculptee-par-les-eaux - Krizna cave in Slovenia

Karst aquifers are widespread

Karstifiable rocks (potential karst aquifer) Continuous carbonate rocks Discontinuous carbonate rocks Continuous evaporite rocks Discontinuous evaporite rocks Mixed carbonate and evaporite rocks

Freshwater for 25% of world population

Loue spring in the Jura, https://www.destinationlouelison.com/decouvrir/les-vallees-de-la-loue-et-du-lison/la-source-de-la-loue/

Water pollution in Walkerton, Canada

Combined Drought Indicator in Europe - 3rd ten-day period of July 2022 - European Drought Observatory

Drought indicator - Summer 2022

Karst: the scientific challenge

Relation conduit geometry and water flow and pollutant transport is elusive

Objective 1: Establish the physics of conduit scale water flow and pollutant transport

Network structure challenge

Different types of networks but no theory to classify and simulate them all.

Objective 2: Theoretical framework to simulate the structure of karst systems

Upscaling challenge

How to integrate **conduit scale physics** and **network structure** in predictive large scale karst models?

Objective 3: Develop methods and theories to predict flow and contaminant transport processes across scales

WP1

Physical laws at conduit scale

WP2 Karst network structure

WP3

Physical laws at network scale

WP4

Modeling and forecasting

- Floods
- Contamination
- Karst formation

WP1: Physical laws at conduit scale

Scientific breakthroughs: Upscaled equations for water flow and contaminant transport

WP2: Karst network structure

Scientific breakthroughs: Random graphs based on field data and network science

WP3: Physical laws at the network scale

Scientific breakthroughs:

Simulator and upscaled models for mean and extreme behaviors

WP4: Modeling and forecasting

flood

contamination

karst formation

Scientific breakthroughs: Predictive models of karst behavior under external forcings

Multi-scale karst theory

From validation of basic physics laws at conduit scale to comprehensive karst model across the scales.

Synergetic approach never seen before to understand the physics of karst.

Why now? (laser technology, 3D printing, numerical tools, upscaling theory)

Impact of KARST

Physics-based multiscale modeling framework for karst systems

Groundbreaking approach to karst science that was never seen before.

KARST will enable forecasting of flow of water and transport of pollutants in complex karst aquifer.

KARST will contribute to safe freshwater supply

Improve flood and drought predictions and monitoring under a changing climate.

Possible impact to other fields:

- capillary networks in biology
- brain microcirculation
- meltwater flow in glaciers

Loue spring in the Jura, https://www.destinationlouelison.com/decouvrir/les-vallees-de-la-loue-et-du-lison/la-source-de-la-loue/

Karst science breakthroughs

Contributions

Upscaled equations for water flow and contaminant transport on conduit scale

Unprecedented data set on conduit geometry, flow and transport properties

Random graphs based on field data and network science

Upscaled models for mean and extreme behaviors

Predictive models of karst dynamic behavior under external forcings

Unprecedented data base of karst networks

Large-scale coupled numerical simulator

Forecasting of flood and water contamination

Understanding of speleogenesis

Numerical model of speleogenesis

Scientific disciplines

Contributions of KARST project

Geoscience	Karst flow and solute transport modeling, Karst genesis, Understanding the emergence of karst structures
Mathematics	Correlated random graphs & network theory. Homogenization of Laplacian operators on random graphs with random weigths
Physics	Fluid mechanics on tortuous and rough conduits. Anomalous transport on random graphs. Morphogenesis and self-organization in reactive flows. Reactive unsteady CTRW & TDRW
Algorithms / computer science	Diagonalization of very large Laplacian matrices. Graph sparsification

Risks

Mitigation

WP1: 3D printing of conduits. Unforeseen experimental problems.	Preliminary results on 3D printing. Complementarity of experiment and simulation. Previous experience.	First real data set on conduit flow and transport under controlled condition
WP2: No stochastic classification of network structure possible	Stochastic representation of small-scale network features	Classification and simulation framework for karst
WP3: Dependence on inputs of WP1 and WP2/Upscaling	Modular structure of simulator Integrate complexity progressively	Integration of conduit physics and network structure in large scale predictions
WP4: Dependence of tasks on WP3	Modular structure of simulator. Senior researchers in charge of simulator	Predictive model under external forcing
Different backgrounds and scientific communities of PIs	Innovative strategy for synergy creation, knowledge transfer and capacity building	Unprecedented synergetic approach to advance karst science 20

Dynamics of synergy and organization

Actions	Implementation
Governance	 Distributed responsibilities, bi-weekly meetings, continuous communication via electronic means, recruiting strategy
Common recruitment strategy	 Common job advertising, and job criteria (e.g., gender equality plan) Selection committee for PhD and PostDocs Syncronization of starting dates
Knowledge transfer and training strategy, capacity and skill building (KARST team)	 (month 1) Kick-off meeting (month 13) Workshop (intro to karst, fluid mechanics, graphs, transport) (> month 13) Annual workshops (courses/results/coordination) Bi-annual coordination meetings
Research stays and secondments (throughout the whole project)	 Postdocs and PhD students are co-supervised Short term (1-4 weeks) and long-term research stays (> 3 months) in the different institutions by all members
Workshops (open to and engaging the different scientific communities)	 Mid-term workshop (3 years, Lorentz center workshop) End-of-project workshop (6 years, Monte Verita conference)
Integrated research methodology	 Interrelated work package structure and tasks require complementary expertise and synergy between the PIs 21

Karst team (32 people)

Univ. of Ljubjana	IFPEN Paris	Univ. of Neuchâtel	CSIC Barcelona
Bojan Mohar	Benoît Noetinger	Philippe Renard	Marco Dentz
1 Senior Researcher 1 Junior Researcher 4 Postdocs 1 PhD student	3 Senior Researchers 2 Postdocs 2 PhD students 1 Lab Engineer	1 Senior Researcher 2 Postdocs 2 PhD students 2 Field technicians	1 Senior Researcher 3 Postdocs 2 PhD students

Joint supervision of PhD students

Person	Main supervisor	Second Supervisor	PhD topic	Quarter
PhD 1	Dentz	Renard	Physical laws at conduit scale	Q5-20
PhD 2	Dentz	Noetinger	Transport laws at catchment scale	Q9-24
PhD 3	Mohar	Renard	Graph characterization and simulation	Q5-20
PhD 4	Noetinger	Mohar	Flow equations at catchment scale	Q5-16
PhD 5	Noetinger	Mohar	Evaluating flow response to climate change	Q11-22
PhD 6	Renard	Dentz	Environmental forensic	Q5-20
PhD 7	Renard	Dentz	Physics based modeling of karst formation	Q9-24

					Y	Year 1			Year 1			Year 2			Year 3				Yea	ar 4	,	Year 5				Year 6		
PD	Main Tasks	Main a	affiliation	Strong interactions		02	G3	8 8	ה ט	80 80	Q4	ø	Q2	03 04	g	Q2	Q3	Q4	g	02	64 G	Q1	8	20 22	t Ž			
1	CFD modeling and upscaling at conduit scale	CSIC	Dentz	Noetinger, Renard																								
2	Development of numerical tool / catchment scale	CSIC	Dentz	Mohar, Renard																								
3	Upscaling of transport / catchment scale	CSIC	Dentz	Noetinger																								
4	Graph characterization	UL	Mohar	Renard, Noetinger																								
5	Graph simulation	UL	Mohar	Renard																								
6	Hydrological forecasts and graphs	UL	Mohar	Noetinger																								
7	Numerical methods for solving PDEs (CFD + catchment)	SFU	Mohar	Dentz																								
8	Upscaling of flow / catchment scale	IFPEN	Noetinger	⁻ Mohar																								
9	Flow response / Nimes	IFPEN	Noetinger	Mohar, Renard																								
10	Cave geometry data acquisition and modeling	UNINE	Renard	Mohar, Noetinger																								
11	Karst formation	UNINE	Renard	Dentz, Mohar																			24	1 				

Main hypotheses

- Hypothesis 1: Classical methods do not work (additional parameters/new equations are needed)
- Hypothesis 2: It is possible to arrive at stochastic network representations that are representative of real karst networks
- Hypothesis 3: Flow and transport laws at catchment scale can be derived (in contrast to data-driven approach hypotheses)

Structure of KARST

			Year 1 Y					Year 2				Year 3				Yea	ar 4			Yea	ar 5			r 6	i i	
		PI Teams	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP1	Physical laws at individual conduit scale	1 2 3 4																								
T1.1	Individual cave geometry	x x L																								
T1.2	Flow and transport experiments	x L x																								
T1.3	CFD flow and transport experiments	L x x x																								
T1.4	Flow and transport laws at conduit scale	LXX																								
WP2	Karst network structure	1 2 3 4																								
T2.1	Data collection network geometry	x x L																								
T2.2	Graph characterization and analysis	L x x																								
T2.3	Simulating cave networks	x L x x																								
WP3	Physical laws at the network scale	1 2 3 4																								
T3.1	Develop a numerical simulator	L x x x																								
T3.2	Upscaling of flow	x x L x																								
T3.3	Upscaling of transport	LXX																								
WP4	Modeling and forecasting	1 2 3 4																								
T3.1	Droughts, flash floods and climate change	x L																								
T3.2	Environmental forensic	x x L																								
T3.3	Emergence of specific karst structures	x x x L																								

1 = Dentz, 2 = Mohar, 3 = Noetinger, 4 = Renard